banner



The Energy Feed From Photovoltaic Cells in Panels and Shingles in Roof Coverings

A rooftop solar power system, or rooftop PV system, is a photovoltaic (PV) system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure.[1] The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters and other electrical accessories.[2]

Rooftop mounted systems are small compared to utility-scale solar ground-mounted photovoltaic power stations with capacities in the megawatt range, hence being a form of distributed generation. Most rooftop PV stations are Grid-connected photovoltaic power systems. Rooftop PV systems on residential buildings typically feature a capacity of about 5–20 kilowatts (kW), while those mounted on commercial buildings often reach 100 kilowatts to 1 Megawatt (MW). Very large roofs can house industrial scale PV systems in the range of 1–10 Megawatts.

Installation [edit]

Workers install residential rooftop solar panels

The urban environment provides a large amount of empty rooftop spaces and can inherently avoid the potential land use and environmental concerns. Estimating rooftop solar insolation is a multi-faceted process, as insolation values in rooftops are impacted by the following:

  • Time of the year
  • Latitude
  • Weather conditions
  • Roof slope
  • Roof aspect
  • Shading from adjacent buildings and vegetation[3]

There are various methods for calculating potential solar PV roof systems including the use of Lidar[4] and orthophotos.[5] Sophisticated models can even determine shading losses over large areas for PV deployment at the municipal level.[6]

Components of a rooftop solar array:

The following section contains the most commonly utilized components of a rooftop solar array. Though designs may vary with roof type (e.g. metal vs shingle), roof angle, and shading concerns, most arrays consist of some variation of the following components

  1. Solar Panels produce carbon free electricity when irradiated with sunlight. Often made of Silicon, solar panels are made of smaller solar cells which typically number 6 cells per panel. Multiple solar panels strung together make up a solar array. Solar panels are generally protected by tempered glass and secured with an aluminum frame.[7] The front of a solar panel is very durable whereas the back of a panel is generally more vulnerable.
  2. Mounting clamps generally consist of aluminum brackets and stainless steel bolts that secure solar panels to one another on the roof and onto the rails. Clamps often vary in design in order to account for various roof and rail configurations.[8]
  3. Racking or rails are made of metal and often lie in a parallel configuration on the roof for the panels to lie on. It is important that the rails are level enough for the panels to be evenly mounted.[9]
  4. Mounts attach the rails and the entire array to the surface of the roof. These mounts are often L brackets that are bolted through flashing and into the rafters of the roof. Mounts vary in design due to the wide range of roof configurations and materials.[8]
  5. Flashings are a durable metal plate that provide a water resistant seal between the mounts and roof surface. Oftentimes, caulk is used to seal the flashing to the roof and it resembles a metal roof shingle.
  6. DC/AC wiring for inverters connect wires between panels and into a micro inverter or string inverter.[9] No cables should touch the roof surface or hang from the array to avoid weathering and the deterioration of cables.
  7. Micro inverters are mounted to the bottom of the panel and convert DC power from the panels into AC power that can be sent into the grid. Micro inverters allow for the optimization of each panel when shading occurs and can provide specific data from individual panels.[9]

Finances [edit]

Installation cost [edit]

PV system prices (2022) [edit]

[ needs update ]

Residential
Country Cost ($/W)
Australia 1.0
China 0.8
France 1.1
Germany 1.2
Italy 1.3
Japan 1.2
United Kingdom 1.2
United States 1.1
Solar power in India 1.0
Commercial
Country Cost ($/W)
Australia 0.85
China 0.64
France 0.9
Germany 0.9
Italy 0.9
Japan 0.95
United Kingdom 1.0
United States 1.0
India 0.75

Cost trends [edit]

In the mid-2000s, solar companies used various financing plans for customers such as leases and power purchase agreements. Customers could pay for their solar panels over a span of years, and get help with payments from credits from net metering programs. As of May 2017, installation of a rooftop solar system costs an average of $20,000. In the past, it had been more expensive.[10]

Utility Dive wrote, "For most people, adding a solar system on top of other bills and priorities is a luxury" and "rooftop solar companies by and large cater to the wealthier portions of the American population."[10] Most households that get solar arrays are "upper middle-income". The average household salary for solar customers is around $100,000.[10] However, "a surprising number of low-income" customers appeared in a study of income and solar system purchases. "Based on the findings of the study, GTM researchers estimate that the four solar markets include more than 100,000 installations at low-income properties."[10]

A report released in June 2018 by the Consumer Energy Alliance that analyzed U.S. solar incentives showed that a combination of federal, state and local incentives, along with the declining net cost of installing PV systems, has caused a greater usage of rooftop solar across the nation. According to Daily Energy Insider, "In 2016, residential solar PV capacity grew 20 percent over the prior year, the report said. The average installed cost of residential solar, meanwhile, dropped 21 percent to $2.84 per watt-dc in the first quarter of 2017 versus first quarter 2015."[11] In fact, in eight states the group studied, the total government incentives for installing a rooftop solar PV system actually exceeded the cost of doing so.[11]

In 2019, the national average cost in the United States, after tax credits, for a 6 kW residential system was $2.99/W, with a typical range of $2.58 to $3.38.[12]

Due to economies of scale, industrial-sized ground-mounted solar systems produce power at half the cost (2c/kWh) of small roof-mounted systems (4c/kWh).[13]

Net-metering mechanism [edit]

This is an arrangement for grid connected solar power systems. In this mechanism, the excess solar power generated is exported to the electricity grid. The consumer gets credit for the amount of power exported. At the end of the billing cycle, the consumer is charged for the net or difference of power imported and power exported to the electricity grid.[14] Hence the name, net-metering.

A key point to note here is that there is no sale of solar power in this mechanism. The exported kWh are only used to adjust the imported kWh prior to the bill calculation.

Feed-in tariff mechanism [edit]

In a grid connected rooftop photovoltaic power station, the generated electricity can sometimes be sold to the servicing electric utility for use elsewhere in the grid. This arrangement provides payback for the investment of the installer. Many consumers from across the world are switching to this mechanism owing to the revenue yielded. A public utility commission usually sets the rate that the utility pays for this electricity, which could be at the retail rate or the lower wholesale rate, greatly affecting solar power payback and installation demand.

The FIT as it is commonly known has led to an expansion in the solar PV industry worldwide. Thousands of jobs have been created through this form of subsidy. However it can produce a bubble effect which can burst when the FIT is removed. It has also increased the ability for localised production and embedded generation reducing transmission losses through power lines.[2]

Hybrid systems [edit]

Rooftop PV hybrid system.

A rooftop photovoltaic power station (either on-grid or off-grid) can be used in conjunction with other power components like diesel generators, wind turbines, batteries etc. These solar hybrid power systems may be capable of providing a continuous source of power.[2]

Advantages [edit]

Installers have the right to feed solar electricity into the public grid and hence receive a reasonable premium tariff per generated kWh reflecting the benefits of solar electricity to compensate for the current extra costs of PV electricity.[2]

Disadvantages [edit]

An electrical power system containing a 10% contribution from PV stations would require a 2.5% increase in load-frequency control (LFC) capacity over a conventional system[ jargon ]—an issue which may be countered by using synchronverters in the DC/AC-circuit of the PV system. The break-even cost for PV power generation was in 1996 found to be relatively high for contribution levels of less than 10%. While higher proportions of PV power generation give lower break-even costs, economic and LFC considerations impose an upper limit of about 10% on PV contributions to the overall power systems.[15]

Technical Challenges [edit]

There are many technical challenges to integrating large amounts of rooftop PV systems to the power grid.

Reverse power flow [edit]

The electric power grid was not designed for two way power flow at the distribution level. Distribution feeders are usually designed as a radial system for one way power flow transmitted over long distances from large centralized generators to customer loads at the end of the distribution feeder. With localized and distributed solar PV generation on rooftops, reverse flow causes power to flow to the substation and transformer, causing significant challenges. This has adverse effects on protection coordination and voltage regulators.

Ramp rates [edit]

Rapid fluctuations of generation from PV systems due to intermittent clouds cause undesirable levels of voltage variability in the distribution feeder. At high penetration of rooftop PV, this voltage variability reduces the stability of the grid due to transient imbalance in load and generation and causes voltage and frequency to exceed set limits if not countered by power controls. That is, the centralized generators cannot ramp fast enough to match the variability of the PV systems causing frequency mismatch in the nearby system. This could lead to blackouts. This is an example of how a simple localized rooftop PV system can affect the larger power grid. The issue is partially mitigated by distributing solar panels over a wide area, and by adding storage.

Operation and maintenance [edit]

Rooftop PV solar operation and maintenance is of higher costs in comparison with ground-based facilities due to the distributed nature of rooftop facilities and harder access. In rooftop solar systems it typically takes a longer time to identify a malfunction and send a technician, due to lower availability of sufficient photovoltaic system performance monitoring tools and higher costs of human labor. As a result, rooftop solar PV systems typically suffer from lower quality of operation & maintenance and essentially lower levels of system availability and energy output.

Largest rooftop solar installations [edit]

Rooftop photovoltaic power stations (5 MW and larger)
PV power station Location Country Nominal Power[16]

(MWp)

Notes
Jining Huaxi Shandong China 120 110 GWh/year[17]
Laiyih Group Vinh Long Vietnam 37.6 [ citation needed ]
Mai Dubai Bottling Plant Dubai United Arab Emirates 18.1 52,000 solar modules, completed Summer of 2019
AG Heylen Energy Venlo Netherlands 18.015 This project at Venlo consists of over 48,000 solar modules, and over 100 inverters. 126,000 square meter of roofs is used.[18] Installation completed in August 2020.[19]
Apple Park Cupertino, California United States 17 Approx 10 MW on main building and 7 MW on two parking structures[20]
Arvind Limited Santej India 16.2 This is the largest solar rooftop plant in India at single industrial premises. This project at Santej consists of over 46,000 solar modules, and over 180 inverters. More than 20,000 man-days were spent in installing this landmark and over 40,000 square meter of old roofs were replaced to make way for this plant.[21]
Warehouse by Permacity / LADWP Los Angeles, California United States 16.4 [22]
Dera Baba Jaimal Singh, Beas India 11.5 Solar power plant spread over 42-acre rooftop[23]
Riverside Renewable Energy – Holt Logistics Gloucester Marine Terminal Gloucester City, New Jersey United States 10.1 Three refrigerated warehouse buildings. Completed April 2012 with 9 MW,[24] [25] expanded in 2019[26]
Southern California Edison-Whirlpool Corporation Regional Distribution Center Perris, California United States 10.0 Installed on rooftop of Whirlpool Corporation Regional Distribution Center Sept. 19, 2011[27]
General Motors Zaragoza Spain 11.8 Installed at General Motors Spanish Zaragoza Manufacturing Plant in fall 2008.[28] [29]
St. Charles International Perpignan France 9 Fruit and vegetable distribution centre[30] [31]
Greenport distribution centre Venlo Netherlands 7.7 Distribution center[32]
Amazon Carteret, New Jersey USA 7.5 Warehouse[33]
Goodyear Dunlop logistic centre Philippsburg Germany 7.4 Constructed 2011[34]
Iron Mountain, Inc. Edison, New Jersey United States 7.19 Data center[35] [36]
Shanghai No.1/2 Metro Operation Co. Ltd. Hongqiao Railway Station, Shanghai China 6.68 BIPV roof of the station[37]
NRG Energy-Mandalay Bay Resort Convention Center Las Vegas, NV United States 6.4 Installed on rooftop of Mandalay Bay Resort Convention Center Sept. 18, 2014[38] [39] [40]
MRPL - Mangalore Refinery & Petrochemicals Limited Mangalore India 6.063 Installed on rooftops inside Refinery site, Building Integrated Photovoltaics (BIPV) roof
Pata petrochemicals complex Uttar Pradesh India 5.76 State-owned gas utility GAIL has commissioned the country's second-largest rooftop solar power plant with a capacity of 5.76 MWp[41]
RE Cranbury Solar 1 Cranbury, New Jersey United States 5.73 [36]
Amazon Burlington, New Jersey United States 5.49 Amazon warehouse[36]
Constellation Energy-Toys R Us Flanders, New Jersey United States 5.38 Installed on rooftop of Toys "R" Us distribution center.[42] Was largest in North America.[43]
Amazon West Deptford Township, New Jersey United States 5.15 Amazon warehouse[36]
Sharp Kameyama Japan 5.1 BIPV roof[44]
IKEA Distribution Center Perryville, MD United States 5 [45]
Urban Energy Solar Yonkers, NY United States 5 This system offsets Urban Energy's CO2 emissions by 1,001,340 kg/a.[46]
Sonnenfleck-tts-Bürstadt Bürstadt, Hessen Germany 5 BIPV roof in 2005[47]

See also [edit]

  • Building-integrated photovoltaics
  • List of rooftop photovoltaic installations
  • Maximum power point tracker
  • Photovoltaic power station
  • Solar cable
  • Solar inverter
  • Solar shingles
  • Solar tracker

References [edit]

Home Solar Installation United States - Rooftop Solar Installation Company

  1. ^ Armstrong, Robert (12 November 2014). "The Case for Solar Energy Parking Lots". Absolute Steel. Retrieved 15 November 2014.
  2. ^ a b c d "Photovoltaic power generation in the buildings. Building integrated photovoltaic–BIPV" (PDF). bef-de.org. Retrieved 2011-06-20 .
  3. ^ "Energy Resources and Resource Criteria". greenip.org. Archived from the original on 2013-08-28. Retrieved 2011-06-20 .
  4. ^ Ha T. Nguyen, Joshua M. Pearce, Rob Harrap, and Gerald Barber, "The Application of LiDAR to Assessment of Rooftop Solar Photovoltaic Deployment Potential on a Municipal District Unit", Sensors, 12, pp. 4534-4558 (2012).
  5. ^ L.K. Wiginton, H. T. Nguyen, J.M. Pearce, "Quantifying Solar Photovoltaic Potential on a Large Scale for Renewable Energy Regional Policy", Computers, Environment and Urban Systems 34, (2010) pp. 345-357. [1]Open access
  6. ^ Nguyen, Ha T.; Pearce, Joshua M. (2012). "Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale". Solar Energy. 86 (5): 1245–1260. Bibcode:2012SoEn...86.1245N. doi:10.1016/j.solener.2012.01.017. S2CID 15435496.
  7. ^ "Module Structure | PVEducation". www.pveducation.org . Retrieved 2019-05-08 .
  8. ^ a b "Solar Panel Racking for Roof and Ground Mount Solar". unboundsolar.com . Retrieved 2019-05-08 .
  9. ^ a b c "Anatomy Of A Rooftop Solar Mounting System". Solar Power World. 2014-03-19. Retrieved 2019-05-08 .
  10. ^ a b c d Shallenberger, Krysti (2017-04-27). "Is rooftop solar just a toy for the wealthy?". Utility Dive . Retrieved 2017-05-05 .
  11. ^ a b Galford, Chris (2018-06-14). "Government incentives for rooftop solar often greater than system's total cost, CEA report finds". Daily Energy Insider . Retrieved 2018-07-04 .
  12. ^ "How much do solar panels cost in the U.S. in 2018?". energysage. Retrieved 26 October 2018.
  13. ^ Fox-Penner, Boston University, Peter (19 May 2020). Power after carbon : building a clean, resilient grid. Harvard University Press. pp. 52–53. ISBN9780674241077.
  14. ^ "Net Metering". SEIA . Retrieved 2020-04-17 .
  15. ^ Asano, H.; Yajima, K.; Kaya, Y. (Mar 1996). "Influence of photovoltaic power generation on required capacity for load frequency control". IEEE Transactions on Energy Conversion. 11 (1): 188–193. Bibcode:1996ITEnC..11..188A. doi:10.1109/60.486595. ISSN 0885-8969.
  16. ^ Note that nominal power may be AC or DC, depending on the plant. See AC-DC conundrum: Latest PV power-plant ratings follies put focus on reporting inconsistency (update) Archived 2011-01-19 at the Wayback Machine
  17. ^ "Sungrow Supplies Inverters to 120 MW C&I Rooftop PV Plant". www.saurenergy.com. 22 July 2021.
  18. ^ "Most Powerful Solarroof". Heylen Energy . Retrieved 2020-04-17 .
  19. ^ "Installation Completed of the World's Most Powerful Solar Roof Currently Operating at PVH Europe's State-of-the-Art Warehouse and Logistics Center". 6 October 2020.
  20. ^ "New Apple Headquarters Sets Records in Solar and Green Building". www.renewableenergyworld.com. 2017-03-03. Retrieved 2017-05-09 .
  21. ^ "Arvind unveils India's largest rooftop solar project at 16.2 MW". Construction Week Online India . Retrieved 2019-05-17 .
  22. ^ 50-acre solar rooftop installation up and running in San Pedro, Curbed, Los Angeles, June 26, 2017
  23. ^ 'World's largest' single rooftop solar plant opened at Beas dera, Hindustan Times, May 18, 2016
  24. ^ Largest Rooftop Solar Power Plant in North America Formally Completed
  25. ^ Riverside Renewable Energy LLC
  26. ^ "Holt Logistics Adds Additional Capacity to Groundbreaking 2011 Solar Installation at NJ's Gloucester Marine Terminal". Independence Solar. 2019-07-16. Retrieved 2022-03-02 .
  27. ^ City of Perris solar panels
  28. ^ Uni-Solar Corporate Overview Brochure
  29. ^ GM installs world's biggest rooftop solar panels
  30. ^ Saint-Gobain Solar expands on the PV tiles solar roofing market with an innovative partner: Solaire France Archived 2011-09-27 at the Wayback Machine, October 6, 2009
  31. ^ Trip 1 - Concentrated Solar Power, May 18, 2011
  32. ^ Grootste zonnedak NL in bedrijf gesteld, Greenport Regio Venlo, July 25, 2018
  33. ^ Amazon says it just flipped switch on N.J.'s largest rooftop solar array, August 29, 2017
  34. ^ PV julist and juwi complete 7.4MW Goodyear Dunlop roof installation PV Tech, January 7, 2011
  35. ^ "Iron Mountain Announces the Largest Rooftop Solar Installation of Any Data Center in the US". www.ironmountain.com. 2020-06-12. Retrieved 2022-03-02 .
  36. ^ a b c d "Solar Activity Reports". NJ Office of Clean Energy . Retrieved 2022-03-02 .
  37. ^ World's Largest Integrated Photovoltaic (BIPV) Project Online, July 21, 2010
  38. ^ DLR Group work at Mandalay Bay
  39. ^ DLR Group, Twitter, 2014-09-13.
  40. ^ "MGM Resorts International and NRG Energy Celebrate the Installation of the World's Largest Convention Center Solar Array".
  41. ^ GAIL sets up India's 2nd largest rooftop solar plant in UP, Times of India, January 01, 2018
  42. ^ Solar Industry's Boom in N.J. Casts Shadow Over Program That Spurred It, NY Times, August 25, 2011. Accessed September 18, 2011
  43. ^ Shahan, Zachary (2011-05-19). "Toys"R"Us Installing Largest Solar Roof in North America". CleanTechnica . Retrieved 2022-03-02 .
  44. ^ Building integrated Photovoltaics (BIPV): Solar electric power systems conquer large roofs and façades, July 9, 2007
  45. ^ IKEA, 2014
  46. ^ Half Moon Ventures Unveils One of New York's Largest Rooftop Solar Energy Projects at i.Park Hudson Complex in Yonkers, Dec 6, 2012
  47. ^ BI PV Project Summary

Solar Rooftop system in India http://solarizeindia.in/product-category/grid-tie-solar-solution/

All You need to know about solar rooftop system http://solarizeindia.in/2021/06/08/all-you-need-to-know-about-solar-rooftop-system/

lilliehosess.blogspot.com

Source: https://en.wikipedia.org/wiki/Rooftop_solar_power

0 Response to "The Energy Feed From Photovoltaic Cells in Panels and Shingles in Roof Coverings"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel